A Gaussian Affine Term Structure Model of Interest Rates and Credit Spreads

Zhiping Zhou

Bocconi University

Job Market Paper 2014-2015

Motivation

- A No-Arbitrage Finance Framework
 - The pricing kernel exists (prices all cash-flow)
- Ang and Piazzesi (2003)
 - Extend standard affine term structure models (ATSM) by incorporating two macro variables as priced risk factors
 - Identify their explanatory power for Treasury yields and ability to improve out-of-sample forecasts
- Targets: extend the paper of Ang and Piazzesi (2003) and price corporate bonds and Treasuries in a unified framework
 - Incorporate financial market variables (funding liquidity and market volatility)
 - Propose a minimum-chi-square method (MCSE) for estimation (Hamilton and Wu (2012, 2014))

- Macroeconomic factors display large explanatory power for Treasury yields and credit spreads
- Financial market factors have limited effects on the Treasury yield curve but substantial impacts on the credit spread
 - Positive volatility shocks increase credit spreads and this effect is stronger for low rated credit spreads
 - Liquidity factor has the strongest effects on short-term credit spreads among the four economic factors
 - The effects of macro variables are more persistent than the effects of financial market variables
- Forecasts for credit spreads improve when financial market factors are incorporated and when no-arbitrage restrictions are imposed.

- A growing literature that uses either reduced-form or structural models (Singleton (2006): Empirical Dynamic Asset Pricing)
 - These models summarize the variation on the term structure of interest rates and credit spreads
 - These studies are based on latent variables, directly derived from the yield curve and credit spread term structure
 - Only a small number of observable variables are incorporated for tractability reasons
- The economic meanings of these latent factors are unclear!

- A growing literature that jointly estimates the term structure of Treasury yields and corporate bond yields
 - Mueller (2008)
 - Wu and Zhang (2008)
- Gaussian ATSM: tremendous numerical challenges in estimating parameters due to highly non-linear likelyhood surfaces
 - Ang and Piazzesi (2003): a model with many factors
 - Mueller (2008): 2 billion sets of starting values
- We propose a minimum-chi-square method for the estimation
 - Uses linear regression to reduce the dimension of the numerical optimization problem
 - Eliminates parameters from the objective function that cause problems for MLE and QMLE

- The effects of aggregate liquidity or liquidity risk on asset pricing
 - Garleanu and Pedersen (2011): funding liquidity crisis can cause price gaps
 - Dick-Nielsen, Gyntelberg, and Lund (2013): funding liquidity drives the bond market liquidity in Denmark
- The relationship between illiquidity shocks and returns for corporate bonds
 - Acharya, Amihud, and Bharath (2013): impact of liquidity shocks on asset prices is stronger in adverse economic times
 - Lin, Wang and Wu (2011): liquidity risk determines corporate bond returns
- We study the effects of funding liquidity on corporate bond pricing in a no-arbitrage framework

The Model: Affine Functions

• The risk-free rate, r_t^f is assumed to be general affine functions of the underlying state vector:

$$r_t^f = \alpha_0 + \alpha_1 H_t,$$

where α_0 is a scalar, α_1 is an $N_h \times 1$ vector and H_t is an $N_h \times 1$ vector of state variables at time t.

• The stochastic discount factor (SDF):

$$M_{t+1} = \exp(-r_t^f - \frac{1}{2}x_t'x_t - x_t'\epsilon_{t+1}).$$

• The market price of risk, x_t , follow the affine specification:

$$x_t = \xi_0 + \xi_1 H_t,$$

in which ξ_0 is an $N_h \times 1$ vector and ξ_1 is an $N_h \times N_h$ matrix. Here the SDF is a quadratic function of x_t .

• The total gross return R_{t+1} of any nominal asset satisfies

 $E_t(M_{t+1}R_{t+1}) = 1.$

The Model: State Variables

• The dynamics of $H_{t+1} = (H_{t+1}^{m'} H_{t+1}^{l'})'$ in compact form is given as a first order VAR:

$$H_{t+1} = \Theta_0 + \Theta_1 H_t + \Sigma_H \epsilon_{t+1},$$

where ϵ_{t+1} is an $N_h \times 1$ vector of independent standard normal shocks

• The risk-neutral investor believed that the factors are characterized by a Q-measure VAR

$$H_{t+1} = \Theta_0^Q + \Theta_1^Q H_t + \Sigma_H \epsilon_{t+1}^Q,$$

where ϵ_{t+1}^Q is an $N_h imes 1$ vector of shocks under the Q-measure and

$$\begin{array}{lll} \Theta_0^Q & = & \Theta_0 - \Sigma_H \xi_0, \\ \Theta_1^Q & = & \Theta_1 - \Sigma_H \xi_1. \end{array}$$

The Model: Treasury Yields and Corporate Bond Yields

• Treasury bond prices are exponential affine functions of the state variables (Ang and Piazzesi (2003)):

$$P^{TB}(H_t,\tau) = \exp\{-A(\tau) - B(\tau)^T H_t\},\$$

$$B(\tau+1) = \alpha_1 + B(\tau) \Theta_1^Q,$$

$$A(\tau+1) = \alpha_0 + A(\tau) + B(\tau)^T \Theta_0^Q - \frac{1}{2} B(\tau)^T \Sigma_H^T \Sigma_H B(\tau)$$

• The defaultable bonds can be valued as if they were risk-free by replacing the short rate r_t^f with a default adjusted rate $r_t^f + s_t^i$,

$$s_t^i = \eta_0^i + \eta_1^i H_t + \epsilon_t^i,$$

• The time-t price of a zero-coupon defaultable bond for a certain credit-rating class *i* with time to maturity τ is

$$P_i^{CB}(H_t,\tau) = \exp(-A_i(\tau) - B_i(\tau)^T H_t),$$

$$B_{i}(\tau + 1) = \alpha_{1} + \eta_{1}^{i} + B_{i}(\tau) \Theta_{1}^{Q},$$

$$A_{i}(\tau + 1) = \alpha_{0} + \eta_{0}^{i} + A_{i}(\tau) + B_{i}(\tau)^{T} \Theta_{0}^{Q} - \frac{1}{2} B_{i}(\tau)^{T} \Sigma_{H}^{T} \Sigma_{H} B_{i}(\tau) \otimes_{9/28}^{9/28}$$

The Model: Corporate Bond Spreads

• The observed yields on zero coupon Treasury bonds are given by,

$$y(H_t,\tau) = -\frac{\log P^{TB}(H_t,\tau)}{\tau} = \frac{A(\tau)}{\tau} + \frac{B(\tau)^T}{\tau}H_t + e(t,\tau).$$

• The observed yields on zero coupon defaultable bond are given by,

$$y_i(H_t,\tau) = -\frac{\log P_i^{CB}(H_t,\tau)}{\tau} = \frac{A_i(\tau)}{\tau} + \frac{B_i(\tau)^T}{\tau}H_t + e_i(t,\tau).$$

 Credit spreads can then be calculated as the difference between the yields on defaultable and default-free bonds:

$$CS_{i}(t,\tau) = y_{i}(t,\tau) - y(t,\tau)$$

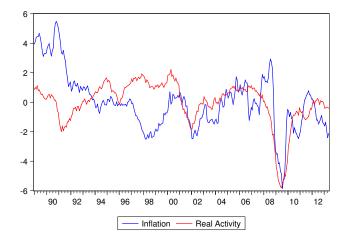
= $\left[\frac{A_{i}(\tau) - A(\tau)}{\tau}\right] + \left[\frac{B_{i}(\tau) - B(\tau)}{\tau}\right]^{T} H_{t}$
+ $e_{i}(t,\tau) - e(t,\tau).$

10 / 28

イロン イロン イヨン イヨン 三日

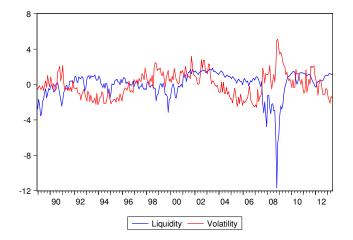
- Government bonds
 - 1m and 3m-Treasury yields from Fama CRSP Treasury Bill files
 - 24m, 60m and 120m-Treasury yields from Guerkaynak, Sack, and Wright data
- Corporate bonds
 - A and BBB-rated corporate yields from Merrill Lynch
 - Sample period: 1988:12 to 2013:05
- Economic variables: Extract 1st PCA
 - Inflation: PPI, CPI and PCEde
 - Real activity: GEMP, GIP and UE
 - Liquidity: 3m-TED, 6m-TED and 3-month CPMFFR
 - Volatility: VXO and VIX

Data: Inflation and Real activity



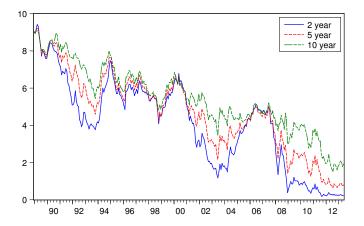
- Inflation factor peaks in early 1991 and then goes down
- Real activity factor moves at business cycle frequencies

Data: Liquidity and Volatility



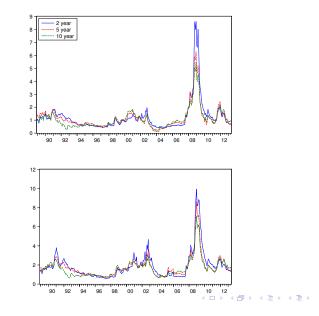
 Spikes in volatility and troughs in liquidity appear in financial market turbulence

Data: Treasury Yields



• The movement in the Treasury yields is related to macro factors

Data: Credit Spreads



15 / 28

э

Econometric Methodology

• We adopt a VAR(1) for the underlying states:

$$\begin{aligned} H_{t+1}^m &= \Theta_{0m} + \Theta_{mm} H_t^m + \Theta_{ml} H_t^l + \Sigma_{mm} \epsilon_{t+1}^m \\ H_{t+1}^l &= \Theta_{0l} + \Theta_{lm} H_t^m + \Theta_{ll} H_t^l + \Sigma_{lm} \epsilon_{t+1}^m + \Sigma_{ll} \epsilon_{t+1}^l \end{aligned}$$

• (MLE) The structure model is given as

$$\begin{aligned} H_t^m &= \Theta_{mm} H_{t-1}^m + \Sigma_{mm} \epsilon_t^m \\ Y_t^1 &= C_1 + D_{1m} H_t^m + D_{1l} H_t^l \\ Y_t^2 &= C_2 + D_{2m} H_t^m + D_{2l} H_t^l + \Sigma_e u_t^e \end{aligned}$$

• (MCSE) The reduced-form model is given as

$$\begin{aligned} H_t^m &= \phi_{mm}^* H_{t-1}^m + u_{mt}^* \\ Y_t^1 &= C_1^* + \phi_{1m}^* H_{t-1}^m + \phi_{11}^* Y_{t-1}^1 + \psi_{1m}^* H_t^m + u_{1t}^* \\ Y_t^2 &= C_2^* + \phi_{2m}^* H_t^m + \phi_{21}^* Y_t^1 + u_{2t}^* \end{aligned}$$

VAR parameters	No. of elements	Σ _e 5	Σ _{mm} 10	Θ_{mm} 16	$\xi_{1m,1/1}$ 16+9	$\frac{\alpha_1}{7}$	Θ _{//} 6	η_0 1	η_1 7	$rac{lpha_{0}}{1}$	ξ ₀ 7
Ω_2^*	5	×									
$\Omega_m^{\overline{*}}$	10		×								
ϕ^*_{mm}	16			×							
ψ_{1m}^*	12			×	×	×			×		
ϕ_{21}^{*}	15				×	×	×		\times		
Ω_1^*	6				×	×	×		\times		
ϕ_{11}^{*}	9				×	×	×		×		
ϕ^*_{2m}	20			×	×	×	×		×		
ϕ_{1m}^*	12			×	×	×	×		\times		
C_2^*	5		×	×	×	×	×	\times	\times	×	×
C_1^*	3		\times	×	×	×	×	\times	\times	\times	×

Table: Mapping between structural and reduced-form parameters

Minimum-Chi-Square Estimation

• (MLE) We assume that \widehat{R} is a consistent estimate of the information matrix, which satisfies

$$R = -rac{1}{T} E\left[rac{\partial^2 \mathcal{L}\left(\pi;\,Y
ight)}{\partial \pi \partial \pi^{\prime}}
ight].$$

• (MCSE) The Wald statistic is calculated as

$$T\left[\widehat{\pi}-g\left(\theta\right)
ight]'\widehat{R}\left[\widehat{\pi}-g\left(\theta
ight)
ight],$$

and its asymptotic distribution under the null hypothesis follows $\chi^2(q)$, where the degree of freedom q is the dimension of π .

• $\hat{\theta}_{MCSE}$ are asymptotically equivalent to $\hat{\theta}_{MLE}$

Maturity	2 year	t-Statistic	5 year	t-Statistic	10 year	t-Statistic
Intercept	4.101	(40.733)	4.735	(50.020)	5.458	(65.536)
Inflation	0.599	(11.085)	0.571	(11.241)	0.511	(11.434)
Real Activity	0.636	(8.806)	0.403	(5.926)	0.183	(3.066)
Adjusted R ²	0.480		0.418		0.366	
Intercept Inflation Real Activity Liquidity Volatility	4.101 0.532 0.655 -0.273 -0.068	(41.501) (9.254) (8.764) (-3.521) (-0.807)	4.735 0.531 0.408 -0.156 -0.055	(50.238) (9.692) (5.730) (-2.114) (-0.680)	5.458 0.490 0.188 -0.085 -0.023	(65.509) (10.117) (2.991) (-1.297) (-0.323)
Adjusted R ²	0.499	(-0.007)	0.423	(-0.000)	0.366	(-0.525)

- Inflation and real activity are significant in all regressions
- Adding financial market variables marginally improves Adj. R²

Maturity	2 year	t-Statistic	5 year	t-Statistic	10 year	t-Statistic
Intercept	1.220	(23.438)	1.129	(27.203)	1.074	(28.453)
Inflation	0.029	(1.044)	0.077	(3.434)	0.029	(1.417)
Real activity	-0.569	(-15.237)	-0.358	(-12.003)	-0.298	(-11.016)
Adjusted R ²	0.450		0.327		0.294	
Intercept	1.220	(42.634)	1.129	(48.559)	1.074	(48.310)
Inflation	-0.061	(-3.681)	0.011	(0.814)	-0.024	(-1.862)
Real activity	-0.463	(-21.392)	-0.268	(-15.221)	-0.214	(-12.715)
Liquidity	-0.461	(-20.525)	-0.349	(-19.117)	-0.295	(-16.918)
Volatility	0.128	(5.250)	0.127	(6.427)	0.135	(7.145)
Adjusted R^2	0.834	. ,	0.789	. ,	0.755	. ,

- All coefficients on liquidity and volatility are significant
- Adding financial market variables improves Adj. R^2

Maturity	2 year	t-Statistic	5 year	t-Statistic	10 year	t-Statistic
Intercept Inflation Real activity	1.871 0.002 -0.765	(35.221) (0.082) (-20.057)	1.750 0.034 -0.527	(37.138) (1.340) (-15.588)	1.642 0.010 -0.409	(38.393) (0.445) (-13.311)
Adjusted R^2	0.595	(-20.0017)	0.460	(-13.300)	0.388	(-15.511)
Intercept Inflation Real activity Liquidity Volatility Adjusted R ²	1.871 -0.039 -0.634 -0.305 0.280 0.820	(52.842) (-1.878) (-23.678) (-10.958) (9.267)	1.750 -0.009 -0.420 -0.286 0.214 0.743	(53.870) (-0.487) (-17.084) (-11.194) (7.715)	1.642 -0.022 -0.303 -0.244 0.228 0.729	(57.735) (-1.349) (-14.077) (-10.930) (9.384)

- Results are similar to those for A credit spreads
- Financial market factors \rightarrow the dynamics of credit spreads

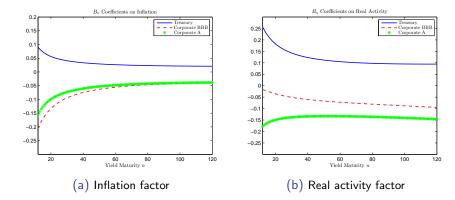
Results: Estimation with No-Arbitrage Restrictions

-							
Θ_{1l}	0.9386 (76.934)	0	0	$\Theta^Q_{1\prime}$	0.6660 (34.426)	0	0
	Ò Ó	0.9934	0		-0.2778	0.9934	-0.0255
		(764.15)			(-10.289)	(764.15)	(-6.8919)
	0	0.0016	0.8262		-0.0298	0.0016	0.9793
		(2.2857)	(42.588)		(-2.0694)	(2.2857)	(489.65)
	0.0027						
α_0	(27.000)						
α_1	0.0004	0.0006	-0.0002	4.94E-06	1.46E-04	1.71E-04	6.51E-05
-	(8.8300)	(10.187)	(-3.2733)	(0.0744)	(12.586)	(21.242)	(5.9724)
η_0^{BBB}	0.0044	()	(•=== •••)	(0.01.1)	()	()	(0.0.2.)
	(42.718)						
η_1^{BBB}	-0.0007	-0.0002	-0.0008	0.0002	3.72E-04	1.84E-04	-1.75E-04
	(-0.7928)	(-0.2488)	(-9.0293)	(3.3113)	(4.9799)	(16.140)	(-11.218)
η_0^A	0.0036						
	(32.143)						
η_1^A	-0.0011	-0.0008	-0.0020	-0.0008	-6.73E-05	1.48E-04	-9.08E-05
	(-1.4056)	(-2.162)	(-20.243)	(-5.2980)	(-2.6289)	(11.128)	(-11.792)

Results: Estimation with No-Arbitrage Restrictions

- Latent factors are highly persistent
- The average compensation for short-term credit risk is higher for higher-rated bonds
- Financial market factors are more important for credit spreads than for Treasury yields
- Liquidity factor is more important than the volatility factor for capturing the dynamics of credit spreads

Results: Factor Loadings on Macro Factors

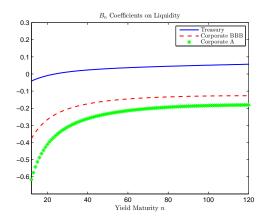


- Positive for Treasury yields and negative for corporate yields
- Larger effects on short yields than on long yields

- (同) - (目) - (目)

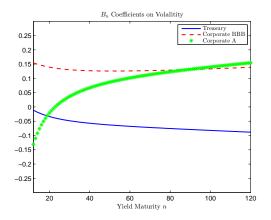
Results: Factor Loadings on Funding Liquidity Measure

IRF



- The loadings on liquidity for corporate yields are negative
- Initial reaction to liquidity shocks is stronger for A-rated bond

Results: Factor Loadings on Market Volatility Measure



- The loadings on volatility for BBB corporate yields are positive
- Short and long yields (A-rated) react to the volatility change in different directions

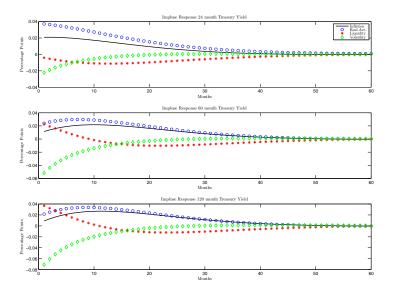
	Two Factors	RMSE criteria Four Factors	No-Arbitrage	MAD criteria Two Factors Four Factors No-Arbitrage			
			0				
A24	0.0390	0.0192	0.0246	0.0268	0.0126	0.0146	
A60	0.0380	0.0357	0.0277	0.0321	0.0198	0.0216	
A120	0.0357	0.0367	0.0312	0.0302	0.0191	0.0223	
BBB24	0.0442	0.0263	0.0211	0.0276	0.0215	0.0117	
BBB60	0.0492	0.0411	0.0410	0.0430	0.0307	0.0317	
BBB120	0.0462	0.0458	0.0453	0.0358	0.0298	0.0303	

- Incorporating financial market variables improves forecasts
- Imposing no-arbitrage restrictions improves forecasts
- RMSE penalizes large errors more than MAD

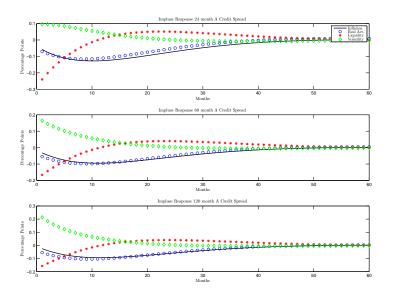
Conclusions:

- Macro factors are important determinants of both Treasury yields and credit spreads
- Financial market factors only have marginal effects on the Treasury yield curve but exert substantial impacts on the credit spread term structure
- Adding financial market factors and imposing no-arbitrage restrictions help in forecasting
- Policy Implications: Funding Liquidity and Volatility
- Future Research:
 - Apply this framework to other assets, such as equity
 - Extend this framework by incorporating regime switches

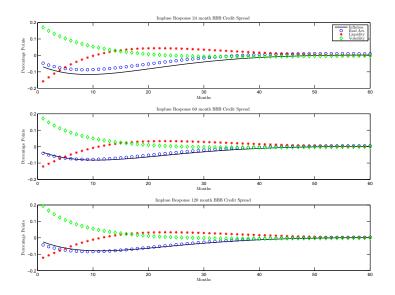
Impulse Responses for Treasury Yields



Impulse Responses for A Credit Spreads



Impulse Responses for BBB Credit Spreads



Factors

- The impulse responses for all factors are large in absolute value at short horizon and level off slowly towards zero.
- Macroeconomic shocks have more persistent impacts on both Treasury yields and credit spreads than financial market shocks.